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Abstract

It is shown that the Brudnyi-Krugljak K-divisibility constant for an arbitrary couple of
Banach lattices on the same underlying measure space is bounded above by 4.
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0. Introduction

The Brudnyi—Krugljak K-divisibility theorem [3,4, p. 325] is one of the most
important and useful results in real interpolation theory, and potentially also has
interesting applications beyond that theory. Let us recall its formulation:

Theorem 0.1. Let A = (Ag, Ay) be a Banach couple. There exists a constant C,

depending only on A, which has the Sfollowing property.
Suppose that

K(t,a; A Z (1) for all t>0,

where a is an arbitrary element of Ay + A1 and the functions ¢, are each positive and
concave on (0, 00) and Y., ¢,(1)< oo. Then there exist elements a,€ Ay + Ay such
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that a =Y"," | a, (where this series converges in Ay + Ay norm) and
K(t,a,; A)<Co,(t) for all t>0 and each neN.
For more details about this theorem and its applications we refer to [4] and also to
remarks in the introductions of [5,6].

It is customary to use the notation y(/_f) for the K-divisibility constant for A, ie. the
infimum of all numbers C having the property stated in Theorem 0.1. It is known (cf.
[6]) that

1<9(A)<3+2V2 (1)

for every Banach couple A. For more information about the value of y(f_f) for
various particular couples we refer to [7] (in particular p. 29) and the papers cited in
[7]. We also refer to a forthcoming paper by Y. Ameur and the author.

It is known (see [7, Section 7]) that estimate (1) can sometimes be sharpened for a whole

class of couples 4 = (Ag, A1), when the spaces Ag and 4, have additional structure. The
case considered in [7] is when 4, and A; are both real Banach spaces of (equivalence
classes of) measurable real valued functions on the same measure space (Q, %, u) and
they are both Banach lattices. More specifically, it is assumed that, for j = 0, 1,

{if f and ¢ are measurable functions on Q which satisfy |g(w)|<|f(w)] }

for a.e. weQ and if fe4;, then ged; with [|g||, <I|f||,

(2)
In fact all results in [7] can also be formulated and proved in essentially the same way, in
the complex case, i.e., where 4y and 4, are complexified Banach lattices on (Q, .7, ),
namely, complex Banach spaces of complex valued measurable functions on Q which
satisfy (2).

We shall use the terminology lattice couple for a Banach couple A which is a couple
of either real or complexified Banach lattices of the kinds described in the preceding
paragraph. It is shown in Section 7 of [7], that every lattice couple A satisfies

p(d)<4i(4), (3)

—

where A(A4) is (cf. [7, Remark 7.4, p. 53]) the infimum of those numbers 4> 1 for which
A has the property of A-monotonicity defined in [7, Definition 1.4, p. 30]. It is shown in
[7] that /I(Z ) = 1 for many particular lattice couples, but also that there are examples

—

where A(4)>1.
In this note we refine earlier alternative proofs of Theorem 0.1 which were given in

[5-7]. As in [7], we only consider the case where A is a lattice couple. Our new proof
of Theorem 0.1 gives a sharpening of (3) for lattice couples, namely

y(A)<4. (4)

It is interesting to note that Brudnyi and Krugljak [4, p. 492] have claimed that
there are sound reasons to believe that estimate (4) holds for all Banach couples A.
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Our proof of (4) will be given in the next and final section of this note.
We will assume familiarity with the basic notions of the real method of
interpolation, as presented, e.g. in [1,2] or [4]. We will use the notation 4~ for the

Gagliardo completion of A;, j = 0,1, i.e. the set of elements a of 49 + 4; which are
limits in 4y + 4; norm of bounded sequences in A4; or, equivalently, for which the

norm ||a|| ,~ =sup,., K(t,a;A)/¢ is finite. Because of the monotonicity of
7

K(t,a;A) and of K(t,a; A)/t we also have llall 4> = lim— o K(t,a; A) and ||al| - =

lim, o K(t,a; A)/1. Of course

||a||Aj_~ <|lal|,, for each ae4;. (5)

We will also assume some familiarity with the elementary properties of Banach
lattices of measurable functions. In particular, we will need the following easily
proved fact (cf. [12, Exercise 64.1, p. 446]).

Proposition 0.2. Let A be a Banach lattice of measurable functions on the measure

space (Q,, 1) and suppose that the sequence of functions {fu},.n in A satisfies
S 1 fally < 00. Then there exists a function f € A such that

N
S =S
n=1

and also f(w) = limy_, o, SN f(w) for p-a.e. weQ.

=0
A

lim
N —

1. The proof itself

We will use many of the features of the proofs given in [5-7]. In particular, our
main step will be to prove the following version of the so-called “‘strong fundamental
lemma’:

Theorem 1.1. Let A = (Ao, A1) be a lattice couple and let A~ denote the couple
(Ag A7) where A is the Gagliardo completion of A; in Ao+ A1, j=0,1. Let
acAy+ Ar. Then for each ¢>0 there exists a sequence of elements {u,;},.; =
{un}, ez in Ao+ Ay such that:

u, € Ay Ay for all but at most two values of n,

Sl uy = a, (convergence in Ay + Ay norm), and

> min{ |l sl wall 4} <A1+ 8)K (1,03 A)  for all 1>0. (6)

n=-—0o0

(In the preceding estimate we set ||uy|| ,~ = o0 if uy ¢A”)
7
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Once we have established Theorem 1.1, we can deduce Theorem 0.1 with estimate
(4) in almost exactly the same way as Theorem 1 of [5] is deduced from Theorem 4 of
[5]. We will not reproduce the argument for doing this [5, pp. 54-55] here since there
is only one change, an obvious one; the constant 8 appearing in [5] has to be replaced
here by 4.

Remark 1.2. The argument to which we have just referred does not use the fact that
A is a lattice couple. In fact, it seems reasonable to conjecture that it also works in
the reverse direction, i.e., that any Banach couple A4 satisfies the conclusion of
Theorem 0.1 with (4) if and only if it satisfies the conclusion of Theorem 1.1. This
equivalence is known to hold whenever 4 [~ =4 isometrically for j = 0,1 or when,
in the conditions formulated in Theorem 1.1, the assertion u,€ Agn A is replaced
by u,e Ay n Ay . For details we refer to Remarks 1.34 and 1.36 and Proposition
1.40 of [8].

We now begin the proof of Theorem 1.1. Some steps of our proof are identical, or
almost identical to certain parts of the proof presented in Section 2 of [6, pp. 73-77].
So we will sometimes refer to that paper, rather than reproducing those parts here.
On the other hand, other steps in the proof given in [6] were explained rather briefly,
sometimes appealing to intuitive geometric arguments. Here we will offer more
explicit and detailed explanations of those steps, for whoever may find them helpful.

Let us fix an element ae Ay + A;. As in [6], we use the abbreviated notation K(7)
for the K-functional K (7, a; A) of a. In fact, except for one change, we will use exactly
the same notation throughout as in [6]. This change (or pair of changes) is that we
have permuted the definitions from [6] of the quantities y,, and y_., (see (13) and
(15)). Our new usage matches more naturally with the notation for the sequence {y, }
defined later on in the proof.

There are two special cases where the proof of Theorem 1.1 is immediate and it is
convenient to dispose of them now. These are when, for some constant ¢ >0, we have
either

K(t)=c for all t>0, or K(t)=ct for all 1>0. (7)

In the first case we have that ||a|\A0~ = ¢ and in the second ”aHAF = ¢. In each of

these cases we obviously obtain (6) (and with a rather better constant) by simply
choosing uy = a and u, = 0 for all n#0.
We recall the definition of the Gagliardo diagram of a, i.e. the set

['(a) = {(x0,x1)eR?| Jaje 4; s.t. lajlly, <xj, j=0,1, a=ao+a}

(cf. [2, p- 39; 9, 10]). Two obvious but important properties of this set are that it is
convex and that it is “monotonic” in the sense that (x, y) eT'(a¢) whenever x> x’ and

y=) for some point (x',)")eI'(a). The set I'(a) (the closure of I'(a)) also has both
these properties. Yet another obvious property is that

a#0 if and only if inf{s>0: (s,5)eI'(a)}>0. (8)
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The set I'(«a) is of course closely related to the K-functional of @, and in particular
it is clear (cf. e.g. [2]) that

{For each >0, the line x 4+ ¢ty = K(¢) has non empty intersection} ©)
with I'(¢) and is disjoint from the interior of I'(a).

It is easy to check that the two special cases listed in (7) are equivalent,

respectively, to I'(a) having one of the special forms

I'(a) ={(x,y): x=c,y=0} or (10)

7

(@) ={(x,y): x=0,y=c} for some ¢>0.

We will make substantial use of the subset D(a) of the boundary OT (a) of the
Gagliardo diagram of a which does not meet the coordinate axes in R?, i.e.

D(a) = 9T (a) " {(xo,x1)eR* x;>0, j=0,1}.

As well as excluding cases (10), we can and will assume from this point onwards
that D(a) is non-empty. We can do this because, as follows immediately from (8)
(and as remarked in [7] and overlooked in [6]), D(a) is empty if and only if @ = 0, in
which case Theorem 1.1 is of course a triviality.

The following two “claims” establish several properties of the sets D(a) and 9T (a)
which we will need to use later. Most of these properties are established explicitly or
implicitly in [6] but, as mentioned above, we feel it may perhaps be helpful to
formulate and prove them in a more detailed way.

Claim 1.3. There exist a point (xo,y0)€D(a) and two non-increasing continuous
convex functions ¢ : [xg, 00)—[0, 0] and ¥ : [yo, 00)—[0,x0] such that ¢(xo) = yo
and Y (yo) = xo and

ol'(a) = 0T'(a)_wol'(a),, (11)

where OI'(a)_ = {(y/(),»): y€[yo, )}
and OI'(a), = {(x,¢(x)): xe[xp, 00)}.
Furthermore,

D(a) = D(a)_vD(a),, (12)

where D(a)_ = {(Y(»),»): Y€[Y0,Y-)}
and D(a), = {(x,¢(x)): xe[x0,xx)},

where

¥ =sup{x| (x.y)eD(@)} and y_. =sup{y|(x,y)eD(a)}. (13)
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Proof. Let (xo,)) be the point of OI'(a) which satisfies /x3+y3 =
inf{\/x? +y% (x,y)edl'(a)}. If yy=0 then it follows immediately from the

“monotonicity” and convexity of I'(a) that (x,y)¢I'(a) whenever x<xp. This in

turn implies that I'(a) = {(x,»): x=>x¢,y>0}. Similarly, we have xo = 0 if and only

if T'(a) = {(x,y): x=0,y=y}. Since we have excluded the cases where I'(a) is of the
forms listed in (10), we deduce that xy and y, are both strictly positive, i.e.
(x0,¥0) € D(a).

For each constant u>x( it is clear that the line x =u intersects I'(a).
Consequently, the function ¢ defined on [xg, 00) by ¢(u) = inf{seR, (u,s)eT (a)}
is finite, non-negative, and satisfies (x, ¢(x))€dI'(a) for each x€[xg, o0 ). Obviously

¢ is non-increasing (because of the “monotonicity’” of I'(a)). Since I'(a) is a convex
set, we also have that ¢ is a convex function. The definition of (x¢, yo) ensures that
¢(x0) = yo.

In view of its convexity on [xg, c0), the function ¢ is continuous on (xg, o). It
follows that (x,y) is an interior point of I'(a) whenever x>x; and y>¢(x).
Consequently, the set {(x,y)edl'(a): x>xo} coincides with the graph
{(x,¢(x)): x>x0}. Similarly, the set {(x,y)eD(a): x>xo} coincides with
{(x,(x)): xo<x<c} where ¢ = sup{x>=x¢: ¢(x)>0}. It is also clear that

¢ =Xy =sup{x: (x,y)eD(a)} and x,, >xg
and furthermore that

Jim ¢(x) = yo = inf{y: (x,y)eD(a)}-

By the monotonicity of ¢, the point (xg, ¢(xo+)) is the limit of the sequence of
points {(xo + 1/n,¢(xo + 1/n))},cn- S0 (%0, p(x0+)) €T (a) and consequently
d(xo+) = ¢d(xg), i.e. ¢ is also continuous (one sidely) at x = xy.

We now interchange the roles of x and y and define the function ¥ on [y, o) by

Y(u) = inf{seR, (s,u)el'(a)}. For exactly analogous reasons to above, ¥ is
continuous, non-negative, non-increasing and convex on [yp, 00) and satisfies
W (»0) = xo. Furthermore, the set {(x,y)edl'(a): y>yo} coincides with the graph
{(b(»),»): yo<y}, and {(x,y)eD(a): y>yo} coincides with {(Y/(y),y): yo<y<c},
where ¢ = sup{y=yo: ¥(y)>0}, and so also ¢ =y_,, =sup{y: (x,y)eD(a)} and
Y—a>JYo-

This completes the proof of Claim 1.3.

Claim 1.4. The quantities x., and y_, defined in (13) satisfy
K(1)

xo = lim K(0) = llall; and v =lim =2 = Jal] - (14)

and the quantities

X_o =inf{x|(x,y)eD(a)} and y., =inf{y|(x,y)eD(a)} (15)
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satisfy

. K1) .
Voo —[1_1)% — and  X_o, —}1_{% K(1). (16)
Proof. We shall prove only the two formulae for the limits as ¢ tends to oo. The proofs of
the remaining two formulae, when ¢ tends to 0, are exactly analogous. Alternatively, they

can be very quickly deduced from the formulae for r— oo by using the “reversed” couple
B= (Bo, By) = (A1, Ap). For the same element ae Ay + A = By + Bj, the Gagliardo
diagram I"3(a) with respect to B is of course equal to {(x,y)eR?: (y,x)el(a)}. Since
K(t,a; B) = tK(1/1), the rest of the argument is obvious.

For each x, € (xo, x, ), the convexity and monotonicity of ¢ guarantee that the left
and right derivatives ¢’ (x,) and ¢ (x.) of ¢ at x, exist and satisfy ¢’ (x,)<
¢’ (x.)<0. For each #,>0 for which ¢’ (x.)< —1/t.<¢' (x.), the line x + 1,y =
X, + t.¢(x,) passes through the point (x,, ¢(x,)) and, by the convexity of I'(a), does
not intersect with the interior of I'(@). It follows that K(z,) = x, + t.¢(x,).

Suppose that {,},.n 1s a strictly increasing sequence in (xo, X, ) which tends to
Xo. Then ¢(&,) tends to y.. For each n we choose #, such that ¢’ (&,)<
—1/t,<¢'.(&,) and so

K(tn) =&+ ln¢(§n)- (17)

Since ¢/, (¢,)<¢' (&,41), we also have that 1,<1,, for each n.

Let us first consider the case when x, = oo. It is clear from (17) that
lim,, ,, K(¢)>lim,_, ,, K(t,) = oo, and this establishes the first formula of (14).
Furthermore, since {¢(&,)} and {K(#,)/t,} are both convergent sequences, so is
{&,/t,} and consequently lim,_,  t, = oo. For each fixed x,e[xp,x,) and each
neN, the point (x.,¢(x,)) lies on or above the line x+ 1,y = &, + t,¢(&,). So
Xo/ty + O(xi) =&,/ th + (&), Taking limits, first as n tends to oo, and then as x.
tends to x., shows that lim,_, &,/t, =0. Consequently lim,_ ., K(¢)/t=
lim,_,, ¢(x) =y, and we have established the first formula of (16).

It remains to consider the case when x ., < oo. Here we must have y,, =0, and,

since (x.,,0)el'(a), this gives us that, for each >0, K(¢#)<xo, +7:-0=x,. We
immediately deduce that lim,_, ,, K(¢)/¢ = 0, which is the first formula of (16), and
also that

lim, -, o0 K(f) <X (18)

As in the previous case, (17) implies that lim,_, , K(¢)>lim,_, , K(¢,) =>x, (even
though now we do not necessarily have lim,_, ., t, = o0). This, together with (18),
establishes the first formula of (14).

This completes the proof of Claim 1.4.

We will now construct a special finite or infinite sequence of points of D(a) which
will be denoted by {(x,,yx)}, . ~,<,, - Our construction is related to others used for

various purposes in several different papers, cf. e.g. [9, p. 227]; [10, p. 95] and also
[11, Example 0, p. 56]. It is almost exactly the same construction as on p. 74 of [6],



M. Cwikel | Journal of Approximation Theory 124 (2003) 124—136 131

but here we will describe it somewhat more explicitly than in [6], using Claim 1.3 and
the functions ¢ and y introduced in Claim 1.3. (As mentioned in [7], there is a minor
misprint in [6], where the range of 7 is incorrectly stated tobe v_,, — I <n<vy, + 1.)
Note that the quantities v, , satisfy

—0<v_,<—1 and 1<v, < 0.

The construction depends on a fixed positive number r, which in [6] is chosen to
equal 1 + v/2. It is convenient that the authors of [6] had the foresight to write most
of their proof for a general parameter r> 1. In our variant here we actually want to
choose r = 2, but we too will present most of the proof for general r, again with a
view to facilitating future improvements.

It is convenient to choose the point (xg, yo), defined as in the proof of Claim 1.3, as
the first (and sometimes only) member of our sequence.

The members (x,,y,) of the sequence for n>1 are constructed by the following
recursive procedure: Suppose that (x,_1,y,—1)€D(a) has been chosen and that it
satisfies x,_1 = x and therefore also y,_; = ¢(x,-1). If

. 1
either rx, 1 =Xy OF =Y, 1 <V, (19)
r

then we set v, = n and terminate the procedure, i.e. we do not construct (x,,, y,,) for
m = n nor for any m>n. Otherwise the set

{XE (xnflaxw): )CZVX”,“(ZS(X) g%(pb(xnfl)}

is non-empty and we choose x, to be its infimum, and y, = ¢(x,). Clearly
(Xn, yn) € D(a). By the continuity of ¢ we have

Xn = FXp—1, Xp ZFXp—1,
either 1 or 1 (20)
Vn <;yn71 Yn = ;ynfl-

If we can construct (x,,y,) in this way for every ne N, then we set v, = 0.

An exactly analogous procedure to that just described is used to recursively
construct the members of the sequence (x,,y,) for n< —1: Suppose that
(Xn+1,Yn+1) €D(a) has been chosen and that it satisfies y, 11 =y and therefore also

Xnl = lﬁ(yn+l)' If

. 1
either ;X,H,] SX_op OF FYpi1 2V oo, (21)

then we set v_,, = n and terminate the procedure, not constructing (x,,, y,) for any
m<n. Otherwise we choose y, to be the infimum of the non-empty set

Ve y-w): 2w (V) <FY(rasn)} and  x, =Y (y). Again we have
(xn, yn) €D(a) and the continuity of ¥ ensures that

1
Xn = — Xn+1, Xn <= Xt
either | r or 4, 4 (22)
—Vn Zyn-&-] —Vn = Vn+1-
r r
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If we can construct (x,,y,) in this way for every negative integer n, then we set
Vo = — 0.

We now observe that, for each point (x,,y,) of the sequence {(xu,yn)},  <pey,
which we have just constructed, and for any choice of the arbitrarily small positive
number ¢ appearing in the statement of Theorem 1.1, the point ((1 + &)x,, (1 + &)y,)
is in T'(a). Thus we can assert, as on p. 75 of [6], that there exists a decomposition

a=ay,+d, (23)
such that
||an||A0<(1 +¢)x, and ||a;||A1<(1 +&)yn- (24)

All steps of the proof up to this point can also be carried out (cf. [6]) when A is an

arbitrary Banach couple. But now we will start using our hypothesis that Ais a
lattice couple. One consequence of this is that it suffices to consider the case where
the element a chosen above is a function which takes only non-negative values. The
general case can be deduced from this case by first finding a sequence {u,} with the
specified properties for the function |a| and then multiplying all elements of that
sequence pointwise by sgn(a) to obtain an appropriate sequence for a itself.

Since a is now taken to be non-negative we can assume, without loss of generality,
that the elements a, and «, in (23) are also both non-negative functions. If they are
not, we can simply replace them by two new functions d, and @, which vanish
wherever a vanishes and, on the support of a, are given by

a, = _lasa and 4 = ﬂ.

|an| + |a,| " an| + |,
Clearly a, and &, are both non-negative and satisfy ¢ = d, + &,. Furthermore (in
view of (2)) they satisfy the norm estimates in (24).

We now define the sequence {u,},., using our non-negative functions a, and a/,
and the formulae (2.8) on p. 75 of [6]. Then, proceeding exactly as in [6], we first
obtain that Y. _ u, = a, where the series converges in 4y + 4, norm, and also

n=—oo

estimates (2.9) and (2.10) of [6], which amount to saying that
||un||A0<(1+8)(1+%)xn for all n<vg, (25)
and
||u,7||A]<(1+s)<l+%)yn1 for all n>v_, + 1. (26)

We do not follow the next steps in [6] since we do not need the more elaborate estimates
of pp. 76-77 for the sums 3% min{||u,|l . tlfunll,, } and 377 min{[fu]] -,
t||un|| A~ }. (Instead, later, we will obtain and use sharpened versions of those estimates.)
At this stage it suffices to show something rather simpler, namely that

o0

Z et ] g5, < 00 (27)

n=—oo
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Conditions (20) and (22) imply that the numbers x, and y, in our construction satisfy

m—n

Xu<r™"x, and y,<r" "y, (28)

for any integers m and n satisfying v_,, <m<n<v.. Since u, =0 for n<v_,, (if
V_o > — 00) and also for n>v,, (if v, < 00), we obtain from (25), (26) and (28) that

0 0 0
1 n
>l = 3 Ml 3 a1+ )x<es
n=—oo n=v_q+1 n=—0oo

and, analogously,

Vo

0 Voo . 1
S lhally, = 3 lllg < Y- (14 (141 )onc
n=1 n=1

n=1

S + (141 )

n=0

Vo —1

1
<(l+e <1+—> r"yp< 0.
(1+¢) - ; Y

These two estimates imply (27).

Let (Q, %, u) be the underlying measure space for the Banach lattices 4y and A4;.
We introduce the measurable sets E, = {weQ : u,(w)>0} and the non-negative
functions g, = u,y, for each neZ.

It follows from (27) and Proposition 0.2 that the series » - u, converges to a
pointwise a.e., as well as in 4o + A1 norm. Since ||gn| 4, 4, <||tn| 4, 4, fOT €aCh 1, We
deduce, again using Proposition 0.2, that the series >.° g, also converges,
pointwise a.e. and also in 49 + A; norm, to a function ge 4y + A4;. Since u, <g, a.e.,
this implies that a(w)<g(w) for a.e. weQ.

Now we need to use the fact that @ is non-negative a second time. It implies that
a(w) =0 for a.e. w in the set where g(w) = 0. Furthermore, the function ¢ : Q- R,
defined by

(o) = {0 if glw)=0

a(w)/g(w) if g(w)#0,

satisfies 0< ¢p(w) <1 for a.e. weQ. We can now define a new sequence { f, }, ., which

will be our “improvement” of the sequence {uy},.,. It is given by

fu=gup for each neZ.

We will see that Theorem 1.1 follows when we replace each u, by f,. Obviously
S fu=g¢=a ae., and as well as converging pointwise a.e., this series also
converges to a in Ay + A; norm. (We have used Proposition 0.2 once more here.) So
to complete the proof it will suffice to show that

0

> min{|[fullys Al full4- }<4(1+6)K(1,a;4)  for all 10, (29)

n=—ao
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Thus we turn to estimating || /|| 4, and || fu|[1,- If Voo + 1 <n<v,, then 0<a,(w) —
a,—1(w) for all weE,. But also, since a,_; is non-negative everywhere, we have
ay(w) — ay—1 (w) <ay(w). Consequently,

[ Sllay < Ngnllay = [1(@n = an1) x5, |1 4, < llanie, |1 4,
< (14 ¢)x,. (30)
We observe that (30) obviously holds also for n=v_, +1 if v_, is finite.
Analogous estimates hold for || fu|| 4,1 If v_op + 1<n<v, then 0<a, | —a,<a,
on E,. Consequently
1l gy <Nty Ly, < (1 + &)y, (31)

and again the same estimate obviously holds for n = v, if v, is finite.

If v, < oo then, for n = v,,, we will sometimes need the following substitute for
(30): Since 0<a—a,,—; on E, and a,, _; is a non-negative function, then
0</f,<gn<a and so, by (14),

1o llas <lallys = xoo. (32)

Similarly, if v_o, > — oo then, for n =v_, + 1, instead of (31) we have, by an
exactly analogous argument to the one establishing (32) including the use of the
second formula in (14), that

|fv,xHHAf<||"l||Al~ =)V-w- (33)

Observe that the two estimates (30) and (31) are improved analogues of the
estimates (25) and (26) (i.e. (2.9) and (2.10) on p. 75 of [6]) for |[uy]| 4, and [[u]] 4,
respectively. Here we have been able to remove the factor (1 4 1/r) which appeared
in both of those estimates.

It will be convenient at this stage to express the set 9I'(a) as the union of a special
sequence of its subsets. For each integer n in the range 1<n<v., we define D, =
{(x,y)edl(a): xy_1 <x<xy,y<po} This means (see Claim 1.3) that D, =
{(x,d(x)): xy-1<x<x,}. Analogously, for each integer n in the range v_. +
1<n<0, we define D, = {(x,y)edl'(a): ya<y<pp-1,X<Xo} which means that
D, = {(l//(y)ay): J/n<y<yn71}-

In view of the monotonicity of the functions ¢ and ¥, we have

DnC{(X,y)GD(a)i xn71<x<x11vyn<y<yn71} (34)

for all # in the range v_,, + I <n<v.
Using (28) with m = 0 and n> 0 arbitrarily large, and then (11) and (12), we obtain
the implications

vw:oo:>x@:oo:>8l“(a)+:D(a)+:UD,,. (35)
n=1
An analogous argument (with n» = 0 and m tending to —o0) shows that

Vo =—0 =y =0 =0(a) =Da_ =] D (36)

n<0
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We need two more sets, D, and D_.,. We set Do, = {(x,y)edl'(a): x=x, _1}if
Vo <00, and Do, =0 if v, = co. Similarly D_,, = {(x,y)edl(a): y=y, 41} if
V_o > — o0, and otherwise it is empty. In all cases, whether or not v,, and/or v_,,
are infinite, we have, using (35), (36) and (11), that

ol'(a)=D_,, WAUD,, where A= U D,. (37)

Vo t+l<n<vg,

Finally, we are ready to estimate ) -~ min{||ﬁ1||A(T,t|\ﬁ,||Ar}. Recalling

property (9), for each fixed >0, we let A, denote the intersection of the line x + ty =
K(1) with OI'(a). At least one of the three sets AnA,, Do, "A, and D_,, n A, is non-
empty, and our proof will consider each of these three possibilities as separate cases.
(These are, in fact, the same three cases which are mentioned in the last paragraph on
[6, p. 75].)

Case 1 is when An A, #0. In this case we let (x*,y*) denote a point of A, and n*
denote an integer in the interval (v_, + 1,v,) such that (x*,y*)e D,+. By (34) we
have that x,- | <x*<x, and also y,~_1=y*>y,. This enables us to use almost
exactly the same estimates as on p. 76 of [6]. The only changes are that u, is of course
replaced by f,, and, since we have now replaced (25) and (26) by (30) and (31), the
factor (1 + 1/r) does not appear. We thus obtain that

o0

-1
> min{ufn|Ao,z|fn||Al}<<1+e><(1—i) +r>1<<r>. (39)

n=-—0o0

We now consider Case 2, which is when D, nA,;#0. Here we have v, < o0 and
x*=x,,__; for some point (x*,y*)€A,. So, using (5), we have

0 Voo

S min{ll il Al Y = > mingfally 1l )
n=—ow n=—oo
Vo —1
<mind[lf L Ao N} + 3 ol
n=—o0

The second term here is estimated in a similar way to that used for Case 1. More
specifically, by (30) and (28), we have

v, —1 vyl vl

S = X Ihla<+e Y x

n=—ow n=v_, +1 n=v_q +1
Voo —1 1 —1
<(1+e) Z rv*l”x‘,x1<(l+s)(l——) X
n=v_,+1 r

< (1 +s)<1 %)_lK(t)

Now we consider the first term: The fact that v, <oco means that either
rXy, 12X (call this “Subcase 2a’") or %yvl,l <Jyo (“Subcase 2b”). In Subcase 2a
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we have, using (32), that
min{|l . Ly Ao Lo Y <o Ly <o <" <K (1),

In Subcase 2b we use (5), (31), (16) and the fact that K(7)/¢ is a non-increasing
function, to obtain that

min{[[ /i, |4 Al Lz Y < Al Ly <+ ), <1+ ) irye,
< (1 +e)rK (7).

Combining the preceding estimates gives us that, in both subcases,

. -1
> min{lllL LAl ) <040 (re (1-5) )&, (39)

n=—0o0

The final case which we have to consider, Case 3, is when D_,, nA,;#0 , so that
Vo> — o0 and y* =y, 4 for some point (x*,y*)eA,. Here again there are two
subcases, depending on whether %Xv,xﬂ <X_o O FYy_ 112V . We leave it to the
reader to provide the details of the arguments for this case. They are completely
analogous to those of Case 2 (or they could, perhaps somewhat tediously, be

deduced from Case 2 applied to the “reversed” couple B mentioned at the beginning
of the proof of Claim 1.4). These arguments again lead to estimate (39). Of course (5)
and (38) also give us (39) in Case 1.

It now remains only to recall that in fact we intended r to be equal to 2.
Substituting this optimal choice of r converts (39) into (29) and completes the proof
of Theorem 1.1. As already explained, this also completes the proof of our main
result, the estimate (4) for all lattice couples.
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